Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Judith L. Flippen-Anderson, a* Theodore Axenrod, Jianguang Sun^b and Richard D. Gilardi^a

^aLaboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375, USA, and ^bDepartment of Chemistry, The City College of the City University of New York, New York, NY 10031,

Correspondence e-mail: flippen@harker.nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.064wR factor = 0.195 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,7-Di-tert-butyl-1,5-dinitro-3,7-diazabicyclo[3.3.1]nonane

The conformation of the title compound, C₁₅H₂₈N₄O₄, was determined. The tricyclic nine-membered ring has a boatshaped azacyclohexane ring on one side of the bridge and a chair-shaped ring on the other side.

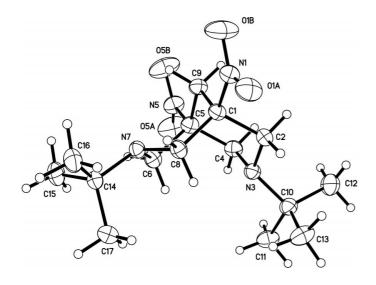
Received 3 October 2001 Accepted 25 October 2001 Online 27 October 2001

Comment

The development of synthetic routes to new cyclic energetic materials with performance properties superior to HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane), but with less sensitivity toward certain stimuli, is a continuing effort. Although they would be expected to be chemically equivalent, the bridged nine-membered ring of the title compound, (I), has a boat-shaped azacyclohexane on one side and and a chairshaped azacyclohexane ring on the other side. This must be due to steric hindrance between the two tert-butyl groups. The all-nitro version (1,3,5,7-tetranitro-3,7,-diazabicyclo[3.3.1]nonane; Gilardi, 2001) of this molecule does have two chairshaped rings. A least-squares fit of the two independent molecules, using all atoms except the nitro-O atoms, gives a weighted r.m.s. deviation of 0.08 Å.

Experimental

The title compound was the minor reaction product formed by the Mannnich condensation of nitromethane with formaldehyde and tertbutylamine. The major product formed was the corresponding sixmembered analog 1,2-di-tert-butyl-5-(tert-butylaminomethyl)-5-nitro-1,3-diazacyclohexane.


DOI: 10.1107/S1600536801018153

Crystal data

 $C_{15}H_{28}N_4O_4$ $M_r = 328.41$ Monoclinic, $P2_1/n$ a = 11.9782 (2) Å b = 9.9382 (1) Åc = 30.5174 (4) Å $\beta = 100.812 (1)^{\circ}$ $V = 3568.35 (8) \text{ Å}^3$ Z = 8

 $D_x = 1.223 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation Cell parameters from 5644 reflections $\theta = 3.0-67.0^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 293 (2) KPlate, colorless $0.36 \times 0.30 \times 0.06 \text{ mm}$

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1 View of 3,7-di-*tert*-butyl-1,5-dinitro-3,7-diazabicyclo[3.3.1]nonane with 20% probability ellipsoids. Only one of the two molecules in the asymmetric unit is shown.

Data collection

Bruker SMART 6000 5860 independent reflections diffractometer 4673 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.038$ Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $h = -12 \rightarrow 13$ $T_{\rm min} = 0.622, T_{\rm max} = 0.929$ $k = -10 \rightarrow 11$ $l = -36 \rightarrow 33$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.1273P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.064 & + 0.8387P] \\ wR(F^2) = 0.195 & where <math>P = (F_o^2 + 2F_c^2)/3 \\ S = 1.11 & (\Delta/\sigma)_{\rm max} = 0.028 \\ 5860 & {\rm reflections} & \Delta\rho_{\rm mix} = 0.26 \ {\rm e} \ {\rm A}^{-3} \\ 436 & {\rm parameters} & \Delta\rho_{\rm min} = -0.33 \ {\rm e} \ {\rm A}^{-3} \\ {\rm H-atom \ parameters} & Extinction \ {\rm coefficient:} \ 0.0080 \ (5) \\ \end{array}$

Of the four nitro groups in the asymmetric unit only one is disordered (66:34).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The NRL authors wish to acknowledge financial support from the Office of Naval Research, Mechanics Division.

References

Bruker (2001). SMART and SAINT. Versions 5.624 and 6.04 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gilardi, R. D., Axenrod, T., Sun, J. & Flippen-Anderson, J. L. (2001). Acta Cryst. E57, o1106–o1107.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2001). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.